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SUMMARY 
In this paper we consider a parameter estimation procedure for shallow sea models. The method is 
formulated as a minimization problem. An adjoint model is used to calculate the gradient of the criterion 
which is to be minimized. In order to obtain a robust estimation method, the uncertainty of the open 
boundary conditions can be taken into account by allowing random noise inputs to act on the open 
boundaries. This method avoids the possibility that boundary errors are interpreted by the estimation 
procedure as parameter fluctuations. We apply the parameter estimation method to identify a shallow sea 
model of the entire European continental shelf. First, a space-varying bottom friction coefficient is estimated 
simultaneously with the depth. The second application is the estimation of the parameterization of the wind 
stress coefficient as a function of the wind velocity. Finally, an uncertain open boundary condition is 
included. It is shown that in this case the parameter estimation procedure does become more robust and 
produces more realistic estimates. Furthermore, an estimate of the open boundary conditions is also 
obtained. 

KEY WORDS Tidal models Maximum likelihood Modelling uncertain boundaries Parameter estimation 

1. INTRODUCTION 

Shallow sea models are often used to describe the tidal movement in coastal waters and estuaries. 
This tidal movement is enforced by a tidal wave that enters the area through one of its open 
boundaries. The propagation of the wave is governed by the shallow water equations, while the 
tidal force is represented by the open boundary conditions. Before a numerical shallow sea model 
can be used, it has to be established that it is reliable. The model has to be adjusted so that the 
model outcome represents a series of observed data as closely as possible. The adjustment of the 
model implies that some quantities appearing in the model must be specified. These may be the 
bottom friction coefficients, the parameters of the open boundary conditions or the geometry of 
the problem. This procedure is called the calibration of the model and is usually done by means of 
trial and error, which is a very time consuming process. Another major difficulty is the lack of 
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insight into the complex behaviour of the model. As a consequence only a very few uncertain 
parameters can be determined by hand. In this paper we introduce a parameter estimation 
technique to perform the calibration automatically. 

If the model is one dimensional and the governing equations are the de St. Venant equations, it 
is possible to use a Kalman filter (see Reference 1) 

(a) to estimate parameters while taking into account the uncertainties that are associated with 
the deterministic model and the open boundary conditions so that model errors, or more 
importantly, boundary errors, do not result in unrealistic parameter estimates, 

(b) to process the data up to the present time in order to correct the results of the model and 
determine the optimal initial conditions for a prediction model. 

However, if the model is two dimensional, computational problems arise and a direct applica- 
tion of Kalman filtering techniques is out of the question. Therefore, if we focus our attention on 
two-dimensional shallow sea models, alternative algorithms have to be developed to accomplish 
the above-mentioned goals. In Reference 2, a first, heuristic approach was developed and applied 
using simulated data. In this paper we improve this method, provide a sound mathematical basis, 
and use it for a number of real-life applications. 

Section 2 describes a method to estimate uncertain parameters in large-scale models. The 
method is very robust in the sense that it also produces reliable results in the presence of 
uncertainties in the open boundaries. Allowing random noise to act on the open boundary 
conditions leads to a stochastic parameter estimation problem. By defining an error criterion that 
measures the difference between the model outcome and the observed data, the estimation 
problem is treated as a minimization problem. The estimation procedure is based on the 
Maximum Likelihood (ML) method. The original idea of using the ML method for the estimation 
of uncertain parameters in stochastic models goes back to the 1960s (see References 3-5). 
However, it leads to a Two-Point Boundary Value Problem (TPBVP) that can usually only be 
solved at relatively high computational cost. Therefore, we make use of the hyperbolic nature of 
the model equations to obtain an efficient algorithm. 

The parameter estimation is performed with a gradient-based algorithm to minimize the error 
criterion. The solution of the TPBVP determines the gradient of the error criterion completely 
without any further calculations. This is the result of applying the method of Chavent in 
a stochastic environment. This method (see Reference 6) is well known in the field of deterministic 
parameter estimation theory to derive the exact gradient of a criterion. If it assumed that except 
for the uncertain parameters, the model and the boundary conditions are perfect, the parameter 
estimation problem becomes a deterministic one. In this case our approach reduces to the 
approach introduced by Chavent. 

In Section 3, the parameter estimation procedure is employed to identify a number of uncertain 
parameters of a shallow water flow model of the entire European continental shelf. We first 
discuss a number of deterministic parameter estimation problems where we assume that, except 
for the uncertain parameters, the model and the (open) boundary conditions are perfect. As 
a consequence, the parameter estimation procedure interprets the differences between the model 
results and the data completely in terms of adaptations of the parameters. This procedure is first 
applied to the simultaneous estimation of space-varying bottom friction coefficients and a space- 
varying depth. Second, the parameterization of the wind stress as function of the wind velocity is 
identified. Finally, we discuss a stochastic parameter estimation problem where the uncertainty of 
the open boundary conditions is taken into account to prevent boundary errors causing 
unrealistic parameter estimates. In this case the bottom friction coefficients, the depth and the 
time-varying open boundary conditions are estimated simultaneously. As a result, the estimates 
of the bottom friction coefficient and the depth become more realistic than in the case where the 
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open boundary conditions were assumed to be perfect. Moreover, a correction of the open 
boundary conditions is also obtained. This can be used to gain insight into the accuracy of these 
conditions. 

2. PARAMETER ESTIMATION THEORY 

2.1. Shallow sea models 

The dynamic equations of shallow sea models are the so-called shaltow water equations, stating 
the conservation of mass and momentum (see Reference 7): 

where 

t 
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C 

D 
9 
P a  

Cd 

VX, v, 
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P w  
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time 
space dimensions 
water level elevation above some reference level 
depth-averaged velocities in the x and y directions 
Chezy coefficient 
wind stress coefficient 
depth below some reference level 
gravitational acceleration 
atmospheric pressure 
wind velocities in the x and y directions 
density of air 
density of water 
angular frequency of the earth. 

At closed boundaries the perpendicular velocity component is set equal to zero, and at open 
boundaries the water level is given as a known function of time. However, due to the non-linearity 
of the dynamics, an additional condition has to be imposed at open boundaries in case of inflow. 
This condition, stating that the parallel velocity component vanishes at these boundaries, is 
necessary to ensure the well posedness of the problem (see Reference 8). 

In order to approximate the partial differential equations (1)-(3), we define a space-staggered 
grid (see Figure 1) and employ an AD1 finite difference scheme.8 In describing the finite difference 
method, we consider a simpler form of the non-linear shallow water equations by neglecting the 
advection and the wind stress terms and linearizing the bottom friction terms. 

(4) + D (t + 2) = 0, 
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Figure 1 .  The computational grid 

The reasons for this simplification are threefold. 

(1) The large-scale application that we discuss in this paper deals with the tidal motion on the 
entire European continental shelf where the effect of advection is relatively small. This dues 
not mean that these terms are neglected in the numerical representation, but that we 
concentrate our analysis on the other terms. 

(2) The adequate numerical representation of the advection terms involves quite complex 
formulae' which do not provide any insight into the global characteristics of the numerical 
model. 

(3) The discretization of non-linear bottom friction and wind stress terms is relatively straight- 
forward. 

The characteristic of an AD1 scheme is the splitting of the time step from k to k+ 1 in two 
half-time steps. Suppose that the state is defined as & =(. . . , uk,,,. &,,, h i , , ,  . . . then in the 
first part of the computation the velocity uk,t,l12 is determined explicitly, based on u;,,,, u i , n  and 
h i , n ,  while the remaining variables ugt12 and hK:12 are found as the solution of the implicit 
equations: 

- k + 1 / 2 -  9 f k k ' m . n  k + 1 / 2 -  
A ,(om, n &,.A +-(hk,n+ 1 - %,A + - C 4  - 1.n + urn- l , n +  1 + u m , n  + Ui,n; 1) +- um,n AY 4 D -0, (8) 

- ( U k + l / 2 - u ~ , n ) + ~ ( ~ k + 1 / 2  2 h k + 1 / 2  f k + l / 2  + v k + 1 / 2 + v k + 1 / 2  k + 1 / 2  ' f % n  
m + 1, n + v m +  1, n - 1 )  +--U~T;'* =O. 

(9) 

D m + l , n -  m,n ) - $ u m , n - 1  m , n  At m 7 n  Ax 

In the second part, the roles of the m and n directions are changed; the velocity component 
uk+  m,n 1 is based on ~ ; k , t , ' / ~ ,  u;TL12 and h&T:l2, and v:' and hi:,' are again the solutions of the 
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2 k + 1 / 2  h k + 1 / 2  f k + 1 / 2  k + l / Z  k + 1 / 2  k + 1 / 2  ’ m * n  k + l = o .  
- ( u k T  1 - u k +  W )  +-(h m+ 1 ,  h- m,n )-;i(um, n -  1 + urn, n +urn + I .n  + urn + 1, n - 1 ) + 7 u m , n  A t  m * n  Ax 

(12) 

To complete the numerical model, Dirichlet conditions are imposed at the boundaries. They 
ensure the well posedness of the tidal motion prcblem. 

The primary aim of this article is to develop a calibration method for general shallow sea 
models rather than developing these models themselves. So it is obvious that explicit reference to 
the detailed numerical representations will only be necessary when dealing with some special 
issues. Therefore, the numerical model is formally written as the discrete system, 

(13) x k +  1 =f(p~ xk)+ B!!k+ 1, 

where & is defined as the state of the system. This contains the water level and velocity 
components in all the grid points. Furthermore, Ifk represents the boundary forcing at time k .  We 
include in our notation the fact that the functionfis non-linear with respect to xk The vector 
- p contains the uncertain parameters in the model, e.g. space-varying bottom friction or wind 
stress coefficients. 

Usually, an open boundary is represented by means of a series of harmonic constituents 

where 

(mb,nb) co-ordinates along the open boundaries 
(Ai)(mb,nbl  the amplitude of the ith component at (mb, nb) 
mi the angular frequency of the ith component 
(q&,b,nb) the phase of the ith component at (mb, nb). 

Due to measurement errors that corrupt the harmonic analysis and the limited number of tidal 
constituents that can be taken into account, an unknown part can be added to the right-hand side 
of equation (14) to represent the uncertainties: 

N 

h:mb.flb) = 1 (A) (mb.nb)  ‘OS - (4 i ) (mb, f lb ) l  + ‘unknown part: (15) 

Since we are dealing with tidal motion problems, this ‘unknown part’ can also be described by 

i =  1 

a harmonic sequence 

(16) 
Jm-X 

‘unknown part’ = 1 (ij)(mb,nb) cos [ u j k  At - (4j)(mb,nbJ. 
j= 1 
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The amplitudes (&mb,nb) and the phases ($j)(mb,nb) can now be conceived as unknown but 
time-invariant model parameters. They can be estimated simultaneously with the other para- 
meters. Because it can be assumed that the spatial variations of the amplitudes Aj and the phases 
$ j  are relatively small, we can estimate amplitudes and phases in a limited number of open 
boundary points (mt , nt ). For the open boundary points in between (Aj)(mb,nb) and ($j)(,,,b,mJ, 

these are found by interpolation. 
A fundamentally different approach is that where the uncertainty in the open boundary 

conditions is treated stochastically. Instead of (Aj)(mg,nb) and ($j)(mb,n&), we introduce stochastic 
processes (qig,nbl  k = 1,2,. . . , N }  at the open boundary points with co-ordinates (r~&nE). 
Similar to the assumption that the ‘unknown part’ satisfies equation (16), the time evolution of 
qkbVnb must be given. This can be accomplished by assuming that q i g , n b  evolves in time according 
to an AR(1)-model which is driven by a noise process q%,ib with known statistics 

&,!I€, =pqkb.n% +qki,it,. (17) 

The fact that the time dependence does not have to be strictly specified is a great advantage in 
this stochastic approach. The stochastic noisy forcing term q2.i~ in equation (17) makes 
the entire tidal model stochastic. If the noise sequence qk at the point ( r n t , n t )  is denoted by 
q!, the system noise &=(q:,qi,. . . and a new state vector r k  is defined as 
& = L&, d)’ = &, q:, q i ,  . . . , q;,JT. This stochastic model can now be formally written as 

(18) r k +  1 =f(p, r k )  -k &k+ I -t GFk+ I 3 

where G is the random input matrix and w k  the Gaussian system noise with zero mean and 
covariance matrix Q. 

Observations ?& are assumed to be available according to 

Zk = H r k  -k c k 3  (19) 

where H is the measurement matrix and o k  the Gaussian measurement noise with zero mean and 
covariance matrix R. 

This prescription is the basic model formulation used throughout this paper. 

2.2. The maximum likelihood approach 

The method introduced in this paper tries to find a trajectory, the solution of equations (18) and 
(19), that best fits the observed data series. This trajectory minimizes a measure (the error 
criterion) of the difference between the model outcome and the observed data, taking into account 
the covariances of the measurement and system noise processes. Moreover, this minimizing 
trajectory is parametrized by the unknown parameters in the dynamic equations and the 
uncertain open boundary conditions. In our model we assume that the values of the parameters 
are constant in time, whereas the errors in the open boundary prescription have a time-dependent 
nature: the ‘unknown part’ of this boundary is a function of time. Despite the different character 
of these two error sources, the estimations of the parameters and the open boundary are 
performed simultaneously, by a method that is based on the ML method. 

The simultaneous estimation of parameters and states is performed by maximizing a likelihood 
function L(p, &). Usually this is treated as the minimization of T ( p ,  r k )  with F(p, r k ) =  

-logL(p, z) and Y ( p ,  &) is refered to as the error criterion. The crGerion considered here 
consists of two terms, one representing the measurement error and the other the system error. So 
the minimization of F with respect to states and parameters can also be interpreted as finding 
realizations of the measurement and system noise sequences that have minimum variance. 
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For F we take 
N N -  1 

F@, r k )  = f IlZk - H r k  11 i - 1  + 3 c 11 r k  + 1 -f@, r k )  - &k + 1 II&QCT)--I * (20) 
k = N o  k = O  

As mentioned earlier, we derive p* and _y,*(p*), which minimize y ( p ,  x k ) ,  in two steps. First we 
determine the minimizing trajectory (c(p> 1 k=O, 1, .  . . , N) for a certain value of p. In the 
second step we select from this class of minihizing trajectories the trajectory parametrized by p*, 
that minimizes y globally. In this sense, the class of minimizing trajectories acts as a con- 
straint for the minimization of y with respect to - p. In order to find the minimizing trajectory, 
equation (20) is rewritten as 

N N - 1  N - I  

(21) 

where the adjoint states { y k  ] k =  1,2,. . . , N )  are introduced. At this point the discrete Pontryagin 
minimum principle may be applied to find a realization of the system noise sequence yk This 
leads to the requirement that Gwk = GQGT v k +  For the minimization o f f ,  d y / d r k  and d y / a Y k  
are set equal to zero, so the smoothed state and the adjoint state v k  satisfy 

-Yk*++==f(P,-Yk*)+Buk+l+GQGTYk+1, k = O , . . . , N -  1, (22) 

y k = F ( p ) T y k + l  + H T R - ' ( z k - H g ) ,  k = N o , .  . . , N ,  (23) 

! ! k = F ( p ) T ? k + l ,  k=l ,2 , .  * -9N0-1, (24) 

Y N + I = O ,  (25) 

a =o. (26) 
This is a two-point boundary value problem (TPBVP). Its solution is the trajectory that 

minimizes F for a certain value of the parameter p. The second part of the estimation procedure 
consists of finding the minimum of F with respect to - p. 

2.3. Parameter estimation 

The parameter estimation itself is performed by a gradient-based algorithm, where the gradient 
of y ( p ,  rk) with respect to p is determined by the method of Chavent.6 In trying to find p* we are 
minimizing F( p, r k )  unde; the restriction that equations (22)-(26) (the TPBVP) are-satisfied. 
Then p* can beestimated iteratively using a quasi-Newton method. Therefore, we need, besides 
VY-(pj, ipformation about the Hessian H ( p )  of F( -) to be able to approximate F( -) locally by 
a quadratic function Fq(Ap): 

- 
- 

F q ( A t ) =  F ( p ) + A p T w p ) + t A J T  H ( J )  A!. (27) 
The value for Ap that minimizes F q  is found from V9-q = 0 or Ap = - H -  ( p )  V 9 - ( p ) .  

In general, th6 computation of H-'(p)  is replaced by a recursiveupdate of &is matrix because 
of the large amount of computation time required by an exact calculation. In our case, the 
BFGS-method is used to accomplish thisg It makes the convergence of the iteration almost 
second order, and it can be proved that if the function Y( a )  is purely quadratic with respect to the 
parameter p, the number of iterations equals the dimension of p plus one. Furthermore, it is 
widely accepted that this method is superior for parameter estimatlon problems with a dimension 
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~~ ~ 

Starting value p,  = &,i  = 0 

I 
I 
I 

SolveTPBVP tofind {xi,% Ik .=O, l , . . . ,N}  

N 3F = VJb , )  = Ck=o u k F x k  

determine H - ' ( p , )  and the new search direction z(pi) = -f f(p,)-*vJ(p$) 

i = i + l  cT= i a* = min J(p, + as(pi) 

Figure 2. The parameter estimation procedure 

of p less than 50 (see Reference 10). The whole procedure is shown schematically in Figure 2. The 
method of deriving grad F is described below (see References 6, 11). 

The method of Chavent considers the effects of infinitesimal changes Ap in one of the 
components of - p on F, x k ,  V k ,  <k  and [ k .  - This is done by linearizing the expression given 
above. 



IDENTIFICATION OF SHALLOW SEA MODELS 645 

3. In equation (29) the terms with Atk  and Ark can be neglected because the factors between 
brackets are the left-hand sides of equations (22)-(24) which are equal to zero. Then, by 
rearranging the remaining terms, one finds 

4. The expressions under the summation signs are similar to equations (22)-(24), including the 
boundary conditions, except that <, now plays the role of y k  whereas Ck can be associated 
with rk In looking for a simple expression for grad Y, we can exploit this similarity. If c k = O  - 
and tk - = v k  for all k, then 

a s  aF _- - - c YT+1- y,. 
ap k = O  a~ - 

This implies that V f is simply derived from the solution of the TPBVP, equations (22)-(26), 
or, with a slightly different interpretation, that the only problem for the simultaneous 
estimation of states and parameters is finding the solution of this TPBVP. 

The fact that the condition for _r* is given for the mitial time and the condition for y for the final 
time eliminates the possibility of finding a solution of equations (22)-(24) in a direct way. 
Although many methods for solving TPBVPs are available in the literature, none of them seems 
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very appropriate in our case, because they require excessive computational loads. Therefore, it is 
necessary to develop an alternative strategy that makes use of the special characteristics of the 
problem in order to find a procedure which is also applicable to large-scale problems. 

2.4. Solution of the TPBVP 

models where the random input for the open boundaries is modelled by an AR(1)-model: 
In this section, a strategy for deriving the solution of the TPBVP is described for linear tidal 

rk+ 1 =F()Xk +&k+ 1 + G W k +  1 (32) 

&=Hrkk+pk.  (33) 
Fundamental to the alternative strategy for solving the TPBVP is the fact that the components 

of GQGT y k +  in equation (22) only contribute to &+ through the components 4:". This means 
that the smoothed states follow directly from equation (22) once the smoothed boundary is 
known. The second crucial point is the linearity of the model. This property implies the equality 
of the mean, which can be found by the Kalman filter, and the mode, the maximum of the 
likelihood function. Using a Kalman filter, the observations taken from the actual system and 
modelled by relation (33) can be combined with the information provided by the system model, 
equation (32), in order to obtain an optimal estimate of the state of the system. If f ( k ( l )  is defined 
as the least-squares estimate of r k  based on the measurements {zl, . . . , z t } ,  and P ( k l l )  represents 
the covariance matrix of the estimation error, the recursive filter equations to obtain these 
quantities can be summarized as follows. The optimal state estimate is propagated from measure- 
ment time k - 1 to measurement time k by the equations 

- p( k J  k - l ) = F ( p ) f ( k  - 

P ( k l k - l ) = F ( p ) P ( k -  - I l k -  ~ ) F ( P ) ~ + G Q G ~ .  - (35) 

- ?(klk)= ~ ( k l k - l ) + K ( k ) [ z k - H ~ ( k l k - l ) ] ,  (36) 

P ( k l k ) = P ( k ( k -  l ) - K ( k ) H P ( k l k -  l ) ,  (37) 

- 1 lk -  I ) +  h k ,  (34) 

At time k,  the observation g k  becomes available. The estimate is updated by the equations 

where 
K ( k ) = P ( k ( k -  l ) H T I H P ( k l k -  l)HT+ R]- '  

is the filter gain. Since the model, equations (32) and (33), is time-invariant, this filter gain will also 
become time-invariant. "* l 3  

The recursive Kalman filter can now be used to determine the solution of the TPBVP by the 
following steps: 

1 .  Introduce a new state r;=( &,q;-' ,q;-' , .  . ., qf)T,  which contains the history of the 
stochastic processes qi from the starting time until the present time k. 

2. Use a Kalman filter to process the data { z l  11 = N o ,  . . . , N - 1, N} to produce, at the final 
time k = N ,  the filtered estimate ofthe state _Y'(NIN) = [_Y(NIN),qi(NIN),qi(N- lIN), . . ., 
qi(O(N)]'. As a consequence the minimum variance realization of (pk, k= 1, . . . , N} is found. 

3. Finally, solve equations (22)-(24) by substituting G Q G ~  ?k+ = G p k .  

In practice, the whole history of the stochastic processes { q f  I I=O,  1, . . . , k- 1,k)  is not 
included in Tk+l but only the limited history ( q f l I = k - k o , k - k o + l , .  . . , k - 1 , k ) .  The length 
of this time lag ko is chosen so that {qf-" 1 i= 1,. . . , i,,,} has no further influence on the state rk. 



IDENTIFICATION OF SHALLOW SEA MODELS 647 

This is a direct consequence of the fact that the dynamic equations are hyperbolic, implying that 
every signal entering the model has only a limited residential time. 

The high dimensionality of the Kalman filter equations can be avoided by using a discrete form 
of the Chandrasekhar-type algorithm. This algorithm was first proposed by Morf et and has 
been used in numerous applications. It uses the fact that for certain initial conditions the 
incremental covariance has rank p (p is the dimension of the system noise process) and can be 
factorized as follows: 

where P(klk) is the n x n  covariance matrix of the state estimate at time k based on the 
observations available up to and including time k (nis the dimension of the system state). S(k)  is an 
n x p matrix, and L ( k )  is a p x p matrix. For the model, equations (32) and (33), the recursive 
equations for obtaining the steady-state filter gain are1 * 

P(k1k)-P(k-  l ( k -  l )=S(k )L(k )S(k )T ,  (39) 

Y ( k  + I)= F(_p)S(k) ,  (40) 
M ( k + l ) = M ( k ) +  Y ( k +  l ) L ( k ) Y ( k +  l ) T H T ,  (41) 
R'(k + 1 ) =  Re (k )+HY(k  + l ) L ( k )  Y ( k  + l)THT, (42) 
K ( k +  l ) = G ( k +  l)RL(k+ l ) - ' ,  (43) 
S ( k + l ) =  Y ( k + l ) - K ( k + l ) H Y ( k + l ) ,  (44) 
L( k + 1 )  = L( k )  + L( k )  Y( k + l)THTRe( k )  - H Y (  k + 1 )  L (k ) ,  (45) 

where K ( k )  is the filter gain at time k, Y(k) ,  M ( k )  and Re(k)  are factor matrices and the initial 
condition for the recursion is given by 

Y ( l ) = G ,  M(O)=O, (46) 

RE(0)=R, L(O)=Q. 

Equations (40)-(45) are iterated until 

ll w+ 1)-K(k)ll  < E  II K ( k )  II 9 (47) 
where E is prespecified. Since the underlying deterministic model is of the hyperbolic type, the 
number of iterations depends on the travelling times of the waves in the model and therefore on 
the size of the domain of the problem. 

2.5. Extension to non-linear models 

As we have seen, the computational load is a severe restriction when solving the TPBVP. This 
implies that a compromise has to be found which is applicable to operational models while 
incorporating the non-linear character of the dynamics as far as possible. So far, we have been 
able to profit from the fact that solutions of hyperbolic models are determined by the boundaries. 
This reduced the smoothing problem to the determination of the smoothed boundary. This 
observation holds for the linear as well as the non-linear case. For large-scale models, the location 
of the open boundaries is chosen with care. For example, the open boundaries of a shallow sea 
model are often located in relatively deep water. This implies that the propagation of the tidal 
waves from the open boundaries onto the model is a rather linear process. So, under the 
assumption that some data observation points are located in this 'linear part' of the model, 
smoothed open boundaries can be determined by processing the data by a linear filter. Therefore, 
they can be determined without drastically violating the dynamics. The proposed method is 
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therefore the same as for linear models. Hence, non-lineadties in the dynamics can be introduced 
with very few additional computational requirements. 

2.6. Deterministic parameter estimation problems 

If we assume that, except for the uncertain parameters, the model and the open boundary 
conditions are perfect, the parameter estimation problem becomes deterministic. In this case the 
TPBVP can be solved easily without introducing a Kalman filter. In fact the model and its adjoint 
are now dacoupled. By one run of the dynamical model and, afterwards, one run of the adjoint 
model backwards in time, the TPBVP can be solved. In this case the parameter estimation 
procedure reduces to the well-known approach introduced by Chavent6 for deterministic models. 

3. APPLICATION TO A MODEL OF THE CONTINENTAL SHELF 

3.1. The continental shelf model 

equations. In spherical co-ordinates they read” 
The shallow sea model of the entire continental shelf, CSM-16, is based on the shallow water 

a u  u au 0 a guJ(u2 + v2) -+- - +- - ( u  cos 4) - 2 0 0  sin 4 + 
at Rcos4ae  Rcos4a+  C2(D + h) 

where 4 is the northern latitude, 8 the western latitude, R the radius of the earth (6.378 x lo6 m) 
V+, Vo wind velocities in the + and 8 directions and the other symbols have the same meaning as 
in Section 2. 

The spatial domain of approximately 2-3 x lo6 km2, (see Figure 3) is covered with a numerical 
grid of about 100 (western latitude, stepsize AO= 1/4 deg.) by 85 (northern latitude, stepsize 
A 4  = 1/6 deg.) cells. A large number of these are located on the mainland, so the number of active 
grid cells is reduced to approximately 5000, which makes the dimension of the state vector 
approximately 15 000. The ADI-scheme described by Stelling* is used to discretize the dynamic 
equations (see also Reference 11). 

3.2. Simultaneous estimation of the bottom friction and the depth 

The geometry of a (tidal) flow region is usually derived from nautical cards. One of the purposes 
of these cards is to guide large ships safely through shallow waters. Therefore, these cards express 
the shallowness rather than the depth of a flow region. If we use these maps to prescribe the depth, 
it is reasonable to assume that this prescription of the geometry is erroneous. In this section we 
include these uncertainties in our parameter estimation problem. The whole computational 
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Figure 3. The domain R of CSM-16. 
1,57645; 2, Wick; 3, Aberdeen; 4, Leith; 5, North Shields; 6, Scarborough; 7, Inner Dowsing; 8, Lowestoft; 9, Southend; 
10, Dover; 1 1 ,  Newhaven; 12, Portsmouth; 13, Cherbourg; 14, Calais; 15, Oostende; 16, Vlissingen; 17, BG-2; 18, Goeree; 
19, H.v. Holland 20, Scheveningen; 21, IJmuiden; 22, Den Helder; 23, Harlingen; 24, W-Terschelling; 25, Huibertgat; 
26, Delfiijl; 27, Borkum; 28, Helgoland; 29, Esbjerg; 30, Stavanger, 31, Ekofisk; 32, Station K13A; 33, S8; 34, S3; 35, S1; 

36, S14; 37, C5; 38, C3 

domain R is divided into a number of disjunct subdomains Rf’, j =  1, . . . , jmax. For each 
subdomain R:, a parameter d j  is estimated to adjust the mean level of the depth in the sub- 
domain Clj 

D,,,,=D&,+dj if (m,n)  E Qf’, (51) 
with OK,, the depth used in the operational model so far. The same strategy can be applied to the 
adjustment of the bottom friction coefficients in subdomains Qf, i =  1,. . . , imax: 

C,,,.,,,=C&+ci if (rn,n)~QC. (52) 

The subdomains CIf’ for the adjustment of the depth are not necessarily equal to the domains 
C$ for the estimation of the friction coefficient ci. The reason for choosing different partitions is 
that the influence on the water levels of adapting the bottom friction differs from the influence of 
depth adaptation. The bottom friction affects the amplitude of the tide and the phase shift 
between the water level elevation and the velocities. The depth determines the propagation speed 
of the long waves and the water volume of the domain $2. Moreover, the depth is more 
prominently present in the dynamic equations than the bottom friction. For the minimization 
process in the parameter space, this implies that we cannot expect the error criterion Y ( p )  to be 
purely quadratic with respect to the parameters ci and dj, as is approximately the case wKen only 
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Figure 4. The adjustments of depth (m) found in Experiment I. A negative adjustment means that the depth is reduced 
compared to the operational model. The black dots denote the data observation points 

bottom friction coefficients ci are estimated. This increased non-linearity may hamper the 
minimization because local minima will be more pronounced. 

For the parameter estimation experiments that are discussed in this paragraph, we used field 
data from ten data points* observed on 12 February 1989. In this period the meteorological 
influence on the tidal elevation was minimal. Nevertheless, an atmospheric model provided the 
meteorological input for CSM-16. This implies that, the effect of incorrect meteorological inputs 
on the parameter estimation can be neglected in this case. The successive experiments deal with 
an increased level of detail in the choice of the partition a= unf for the estimation of d j  while the 
partition R =  URf for the estimation of ci remains the same. We now briefly comment on the 
results of the experiments, and give some general conclusions. 

Experiment I .  For the first experiment we take SZF=af for j =  1, . . . , 4  (see Figure 4). Com- 
pared to the operational model, the value of the error criterion F is decreased from 45.79 to 32.44 
within eight iterations (Figure 5). This 29% decrease in 9 causes an average reduction of 16% in 
the RMS error in the data observation points. The RMS errors in the data observation points are 
given in Column 2 of Table I. 

Experiment I I .  The subdomains Qf,j= 1,. . . ,4, are chosen without requiring uniformity of 
the depth in each subdomain. From a physical point of view, the estimation of a d j  in subdomains 

* Wick, North Shields, Lowestoft, Southend. Newhaven, Dover, Vlissingen, Hoek van Holland, IJmuiden and 
Den Helder (see Figure 3). 
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Figure 5. The reduction of the output least-squares function 

Table I. The RMS errors [m] in some data observation points 

Station 

Wick 
North Shields 
Lowestoft 
Dover 
Vlissingen 
H.v.Holland 
I Jmuiden 
Den Helder 

Operational 
model 

0-157 
0.152 
0.104 
0.171 
0.261 
0.124 
0.157 
0-121 

Experiment I 

0.1 10 
0.145 
0.083 
0.147 
0.204 
0-118 
0.133 
0.105 

Experiment I1 Experiment I l l  

0.127 
0,145 
0.095 
0.131 
0.211 
0.138 
0.1 19 
0.096 

0.089 
0.1 15 
0.076 
0.144 
0.200 
0.117 
0.131 
0.101 

containing both deep and shallow areas is more or less the same as the estimation of dj  in the 
shallow area. Consequently, a new partition R= URy that is based on the uniformity of depth in 
Of' will be more suitable. Another reason to change the partition is that the number of 
subdomains Rf' can be increased for estimating d,. It has already been noted that the influence of 
depth adjustment is far greater than the adjustment of bottom friction coefficients and has 
a stronger local effect. Therefore, we make a new partition of R with 17 subdomains (see Figure 6). 
After 12 iteration steps, the value of 9- is now reduced to 3008 (Figure 5). Compared to the 
operational model this is a reduction of 34%. The RMS errors in various data observation points 
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I I 

Figure 6. The adjustments of depth (m) found in Experiment I1 

can be found in Table I, Column 3, and the effects of the parameter estimation are shown in 
Figures 7-9. 

Above we have briefly indicated the effect of various parameter estimation experiments in 
terms of reduction of Y and the RMS errors. As well as these direct consequences, the behaviour 
of the estimation method is also an important issue which raises questions concerning the 
uniqueness of the adjustments, the convergence to local minima, etc. We now consider these 
aspects point wise. 

1. In the final phase of the iteration some parameters are adjusted without reducing the value 
of Y significantly. This had already been noted for c4 in an experiment where only bottom 
friction coefficients were estimated. It also occurs when simultaneously estimating d j  and ci. 

2. In Experiments I and 11, the partitions of R =  UR? for the bottom friction coefficient are 
identical. The differences between the estimated values of ci, i =  1,. . . ,4, are minor, espe- 
cially for c I ,  c2 and c3 (Table 11). The large (percentage) difference for c4 is not surprising 
given the fact that c4 has a very limited influence on the model results. 

3. The problem of convergence to local minima has to be studied carefully. Various estimation 
attempts with different initial conditions resulted in 9-values up to 35. Compared to the 
F-value of the operational model, 45.69, this is still a substantial improvement. When only 
bottom friction coefficients were estimated, convergence to local minima could be avoided 
by normalizing the search direction." Unfortunately, in the case of a simultaneous estima- 
tion of bottom friction and depth this normalization is not capable of avoiding this problem 
completely. This proves once more that the error criterion F(p) is not quadratic with 
respect to the parameters, and the more pronounced local effects of depth adaptation 
hamper the estimation process. 
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4. The adjustments in the southern part of the North Sea are very small. It seems that the depth 
prescribed for the operational model is already close to optimal. 

5. If we consider the adjustments of the parameters, we note that some of them are rather large. 
For the depth, a margin of 5-10% is usually assumed to be reasonable. In Experiment I1 we 
find the largest adjustments in the subdomains along the east coast of England and south of 
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Figure 7. The effects of parameter estimation for the Lowestoft station on 12 February 1989. 0 0 0, field data; -, 
CSM-16. (a) Operational model; (b) Experiment I; (c) Experiment I1 
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Figure 7. (Continued) 

the Channel. Besides the argument already stated in one of the previous points (a large 
adaptation of a parameter that has almost no effect on the value of the criterion), there is 
also a physical explanation. The data observation points are concentrated in the southern 
part of the North Sea (see Figure 4). The parameter estimation procedure searches for 
a parameter p* that minimizes 5, so it will use all its freedom to simulate the water level 
elevation in chis area as closely as possible. The data do not provide enough information to 
simulate the tidal flow accurately in other parts of the continental shelf. In this way the 
adjustments of the parameters may be influenced by other model errors that are not 
explicitly taken into account. If, for example, the open boundary condition is erroneous, the 
parameters will be adjusted so that the error in the simulated tidal wave is reduced while 
propagating to the southern part of the North Sea. 

6. In order to get an idea of the computation time required, we express it in terms of the 
number of model simulations. For simplicity, we assume that solving the adjoint model is 
computationally equivalent to a CSM-16 simulation. So for every iteration step we need 
(i) a CSM-16 simulation and the solution of the adjoint model, to determine VY, and (ii) two 
to three CSM-16 simulations to find the line minimum which is, on average, 4.5 model 
simulations for each iteration step. We let one model simulation cover a period of 4 d : 3 d to 
remove the transient data due to the initial condition and 1 d on which the data are 
compared with the model results. The numerical experiments are performed on a CRAY 
Y-MP2E/132 computer. The simulation of 1 d (with a time step A t =  lOmin) requires 
approximately 12 s. This leads to 4 min CPU time for each iteration step. Therefore, it takes 
approximately 72 min to estimate the parameters in Experiment 11. 
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3.3. Estimation of the wind stress parametrization 

In Section 3.2, the CSM-16 model was calibrated for mild meteorological conditions (i.e. no 
wind or minor wind force). In this calibration the bottom friction coefficient and the depth of the 
flow region were adjusted until maximal agreement was obtained between the simulated water 
levels and the data. 

3.0 

L o  I I I I I I I , . , , , , , , , . , , , , , ,  

(a) 2 4 6 8 10 12 14 16 18 20 22 24 
Time (h) 

3.5 

3.0 1 

2 4 6 8 10 12 14 16 18 20 22 24 
Time (h) 

(b) 

Figure 8. The effects of parameter estimation for the Vlissingen station on 12 February 1989. 000, Field data; 
CSM-16. (a) Operational model; (b) Experiment I; (c) Experiment I1 
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Figure 8. (Continued) 

In this section we deal with the calibration of the model under storm conditions. For the North 
Sea especially, storms have a significant effect on water levels. This is a consequence of the relative 
shallowness of this area and the effect of its funnel shape on north-western storms. To give an idea 
of the effect of such storms, surges of the order of 1-2 m are not exceptional for stations in the 
Dutch coastal area. 

In CSM-16 the wind effect is modelled by a forcing term in the dynamic equations of the 
velocities. In equations (53) and (54, Cd is the surface drag coefficient. It is a proportionality 
constant in the relation of the surface shear stress T~ and the square of the wind velocity Ulo 
(customarily measured at 10 m above the surface). Thus, 

Zs=paCdUIO I UlO I * (53) 
In the literature a wide variety of values have been reported for C d  (see Reference 16 for a recent 

overview). These Cd-values are found from site measurements and show that the drag coefficient 
is not a constant but tends to increase with the wind speed Ulo. On the basis of scatterplots of C d  

versus Ul0, it is often suggested that the drag coefficient is a linear function of the wind speed: 
Cd = a + bUlo. However, there is a great variability in the values of a and 6 in this parametriz- 
ation. It appears that the parameters a and b are regionally dependent. A closer inspection 
suggests that the drag coefficients for shallow waters such as lakes and estuaries tend to be larger 
than for deep seas and oceans. 

Recent investigations suggest that the surface drag is not properly described as a function of 
only the wind speed. It is argued that for the formulation of the surface drag it is more realistic to 
use the state of the air-sea interface. This state is determined by the surface waves which act as 
roughness elements influencing the momentum flux from the atmosphere to the sea. For further 
details on this topic, see References 17 and 18. 

The present operational version of CSM- 16 is still equipped with a 'traditional' Cd-parametriz- 
ation which takes only the wind speed into account. However, this parametrization is slightly 
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adapted compared to the linear form mentioned above. It contains four adjustable parameters: 
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Figure 9. The effects of parameter estimation for the IJmuiden station on 12 February 1989. 0 0 0, field data; CSM-16. 
(a) Operational model; (b) Experiment I; (c) Experiment I1 
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Figure 9. (Continued) 

Table 11. The adjustments of the bottom friction coefficients 
(Chezy values) 

C1 c2 c3 c4 

Experiment I 15 -12 7 - 7  
Experiment I1 17 -10 8 - 3  

Wind speed V 

Figure 10. A general Cd-V curve 
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(See Figure 10 for an illustration of c d  as function of wind speed.) In the operational model the 
following values are used for the parameters: x1 = 10 ms-’, y ,  =0001, x2= 15 ms-’ and 
y, =0.0025. These values were obtained some time ago by a manual calibration of the model. 

Given the importance of an accurate prediction of storm surges and the variability in Cd that 
was reported in the literature, the calibration of the Cd coefficient is repeated for a number of 
storms. The parameter estimation procedure is applied to identify the Cd-parameters 

The C,-coefficient is calibrated using data from three storm periods: February 1989, February 
1983 and November 1981. During these calibration experiments the depth and bottom friction 
coefficients are not adapted, and the original values of the operational model are used. The results 
are summarized in Figure 11 (illustration of the optimized Cd-coefficients) and Figure 12 (where 
observed water levels during the 1983 storm are compared with those according to CSM-16 with 
the calibrated C,-coefficient). 

(Xl,YY,XZ,YZ). 

Two main conclusions can be drawn from these results. 

1. The optimized Cd-parametrizations of the 1981 and 1989 storms do not differ much from the 
one used in the operational model (in this comparison the emphasis is laid on the Cd-values 
for wind speeds greater than 10 m s-  since these contribute most significantly to the surface 
roughness). The Cd-values found for the 1983 storm turn out to be systematically smaller 
than the C,-values for the other storms. These results indicate that the parameters in the Cd 
coefficient are probably not unique and can still depend on the specific storm. On the other 
hand, the variability of the Cd coefficient can be another indication that this wind-dependent 
parametrization of the drag coefficient is too simple for an accurate description of the sea 
surface roughness. 

2. In all three optimizations the error criterion F is only marginally reduced. Apparently the 
manual calibration performed in the past, and leading to the Cd-coefficient of the present 
operational model, had already given acceptable results for the water levels during storm 
conditions. On the other hand, it is expected that the error criterion is rather flat in the 
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1903 - - - -  
1981 - 

I 

5 10 15 20 25 30 
0.0 

Wind speed V 

Figure 1 1 .  The optimized Cd - V curves for three different storms 
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Figure 12. Water levels for the Den Helder station between 31 January and 2 February 1983. + + +, field data; -, 
CSM-16. Experiment 111. 

neighbourhood of the optimized parameters since the reduction of the error criterion is 
small with respect to the variation in the Cd-parameters. This finding is supported by 
a sensitivity analysis of the model with respect to { x l ,  yl,  x2, y2}. This illustrates the model's 
limited sensitivity for the Cd-parameters. 

3.4. Simultaneous estimation of the bottom friction, depth and open boundary conditions 

From the experiments discussed in Section 3.2, we see that the performance of the operational 
model can be improved by adjusting the bottom friction coefficients and the depth. For some of 
the estimated parameters, the adjustments are rather large. One possible explanation is that these 
parameters are adjusted to compensate for other model errors which are not explicitly indicated 
as uncertainties, such as the uncertainties in the prescription of the open boundary conditions. If 
we take a closer look at Figure 6, we see that the largest adjustments are found in the area along 
the east coast of England and south of the Channel. The tidal waves enter the continental shelf at 
the open boundaries and propagate through these areas before they reach the southern part of the 
North Sea where most of the data observation points are located. Hence, our interpretation is 
that the depth is corrected for errors in the prescription of the open boundary error in order to 
represent the tide in the southern part of the North Sea as closely as possible. For the overall 
performance of CSM-16 and a sound physical interpretation, it might be better to take these 
boundary errors explicitly into account. This can be done by introducing a stochastic boundary 
forcing. 

Experiment I I I .  The uncertainty in the open boundaries is represented by a number of 
stochastic processes, 4i, satisfying AR( 1) models. 
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Figure 13. The adjustment of depth (m) 

For CSM-16, with a prescribed water level as an open boundary condition, we introduce qi, 
i = 1,. . . , 5 ,  at the edges of the open boundary (see Figure 13). In between, the correction of the 
open boundary condition is found by linear interpolation. 

In all the real life applications mentioned in this article, the operational model serves as our 
reference to evaluate the results. We have frequently compared the values of the criterion 9- or the 
RMS errors in the data observation points. Since the partition of l2 into subdomains Qf (to 
estimate ci) and (to estimate d,) is the same as was used in Experiment 11, the effect of 
estimating the uncertainty of the open boundary condition is illustrated by comparison with the 
results of Experiment 11. By estimating only the depth and bottom friction parameters, the RMS 
errors were reduced by 16% in Experiment 11. With the additional estimation of the uncertain 
open boundary condition in the present experiment, the reduction is 22% (see Table I). The RMS 
error in each data observation point is given in Column 3. 

The adjustments of the depth in Experiment I1 are occasionally large (see Figure 6). If the 
boundary uncertainty is explicitly taken into account, the adjustments for the depth and bottom 
friction are much smaller (see Figure 13 and Table 111), while the overall result (the reduction of 
the RMS errors) is improved. All the adjustments of the depth lie within a 2% bound. This is far 
below the acceptable level for the adjustments, i.e. between 5 and 10%. Moreover, the smoothed 
boundary indicates that only a small additional force is needed (see Figure 14). The realizations of 
the processes q2 and q5  are very small, in an absolute sense they do not exceed 0.01 m. The 
realizations of the other processes, ql, q3 and q4, are somewhat larger, but they still do not exceed 
0.035 m. Furthermore, it is remarkable that ql, q2 and q3 are strictly positive. We can conclude 
that the mean level of the prescribed open boundary must be increased. 
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Figure 14. The smoothed correction at the edges of the open boundaries in CSM-16 

Table 111. The adjustments of the bottom friction coefficients 
(compared to those in the operational model) 

C 1  c2 c3 c4 - Experiment I1 17 -10 8 -3  

Experiment I11 8 -10 2 -1  

We have seen that the performance of the simulation model is improved by explicitly 
estimating the uncertain open boundaries, not only with respect to the RMS errors but also with 
respect to the physical interpretation of the adjustments of the coefficients. Without the estima- 
tion of the open boundary, the depth was partly corrected for the neglected open boundary errors. 
This implies that the depth is adjusted for very specific open boundary errors and it makes the 
adjustments dependent on the actual situation. Therefore, in this case the improved simulation 
performance does not necessarily imply that the prediction capability of the model is also 
increased. By comparison with the results of Experiment 111 (Figure 15) we conclude that the 
adjustments of the depth in Experiment I1 are in fact partly a compensation for uncertainties in 
the open boundary prescription. This compensational aspect makes the adjustments hard to 
interpret in a physical way and limits the prediction capability of the tidal model. 
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4. CONCLUSIONS 

In this paper a parameter estimation method is developed based on a gradient oriented 
minimization algorithm. One of the crucial aspects in deriving a suitable method was the work of 
Chavent. According to Chavent’s method, the exact gradient of an error criterion can be 
computed by combining the solutions of the original model simulation and its adjoint model. 
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Figure 15. The effects of estimating the uncertainties in the open boundary conditions on 12 February 1989. 0 0 0, field 
data; -, CSM-16, Experiment 111. (a) Lowestoft; (b) Vlissingen; (c) IJmuiden 
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Figure 15. (Continued) 

This algorithm for parameter estimation has several advantages. 

(a) It is flexible, in the sense that the number and type of unknown parameters can easily be 
changed. The adjoint model is invariant and only the way of combining the simulation 
results with the adjoint solution is different. 

(b) It is computationally efficient, since the computational time for each iteration step is 
independent of the number of unknown parameters. 

(c) It is applicable to large scale models. 

In order to be able to estimate parameters in models with uncertain boundary conditions, 
a state estimation has to be included. The proposed strategy considers the equations which are 
satisfied by the state estimates as constraints for the minimization of the error criterion with 
respect to the parameters. For the estimation of the state, a Kalman smoother is employed. The 
state estimations can now be conceived as deterministic state variables. This implies that the 
method of Chavent can again be used to determine the gradient of the error criterion. 

The primary aim of estimating parameters is to improve the performance of the simulation 
model, which is expressed by the RMS errors in the data observation points. From all our 
experiments, we conclude that these RMS errors are reduced substantially. By minimizing the 
error criterion, the adjustments of the model parameters account for all the model errors. This 
implies that these parameter adjustments partly compensate for other model errors. This effect 
can be reduced by introducing stochastic open boundary conditions. 
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